407 research outputs found

    GreenCrowd: Toward a Holistic Algorithmic Crowd Charging Framework

    Get PDF
    Crowd charging represents an alternative peer-to-peer energy replenishment option for mobile users to align with the circular economy paradigm. Following this option, users bound by finite resource capacity utilize the energy from external to the crowd wireless or wired energy sources (such as shared chargers), and internal to the crowd energy sources (such as mobile devices, via wireless power transfer). If designed carefully, such utilization can boost the energy availability of users and provide energy ubiquitously to their devices for making them functional for longer. This article proposes the GreenCrowd framework, introducing a privacy-by-design in the digital domain crowd charging process, the architecture of which incorporates multiple crowd-* components, such as online social information exploitation, algorithmic battery aging mitigation, user reward mechanisms, and advanced decision making. The primary aim of article is to present the technological and applicative requirements and constraints of GreenCrowd, and provide practical evidence on its feasibility

    P. Gingivalis and E. Coli Lipopolysaccharides Exhibit Different Systemic but Similar Local Induction of Inflammatory Markers

    Get PDF
    Background Porphyromonas gingivalis is a gram-negative bacterium that is an important etiologic agent of human adult periodontitis. The goal of the study was to test the hypothesis that two different isoforms, PgLPS1435/1449 and PgLPS1690 exhibit differences in their capacity to stimulate systemic versus local responses compared to E. coli LPS. Methods Lipopolysaccharide (LPS) was inoculated into the scalp of mice and the response was measured locally at the site of site of inoculation and systemically in the heart/aorta. VCAM-1 was assessed at the protein level by ELISA and VCAM-1, E-selectin, and ICAM-1 at the RNA level of RNase protection assay. Serum TNF-α levels were also measured. Results E. coli LPS and both isoforms of P. gingivalis LPS groups were relatively potent in stimulating expression of inflammatory markers with E. coli LPS being somewhat more potent. In contrast, when the systemic response was measured in the heart/aorta, E. coli but not P. gingivalis LPS significantly induced inflammatory markers. At moderate to low doses (1 and 10 ug per injection) serum TNF–α levels were minimally induced by P. gingivalis LPS compared to E. coli LPS. Conclusion The results indicate that both forms of P. gingivalis LPS stimulate an inflammatory response when injected into connective tissue but are minimally stimulatory when a systemic response is measured. In contrast E. coli LPS is a potent stimulus at both the systemic and local level

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    On-Loom, Real-Time, Noncontact Detection of Fabric Defects by Ultrasonic Imaging

    Full text link
    The textile industries of developed nations, such as the United States and the countries of western Europe, are now facing enormous competition from imported fabrics important that the textile manufactures, as well as the machine manufactures, to manufacture a machine with high output, less waste, and individual-machine automation. One of the most labor-intensive tasks in textile production is the inspection and identification of fabric defects. Although visual inspection can identify most defects, an automated or semiautomated inspection system will be more reliable, eliminate potential human errors, improve quality control, reduce waste and energy consumption, and lower operating costs. Currently, an optic/visual system is commercially available, but it is an off-loom system and is very expensive. Other techniques, for example, ultrasonic, millimeter wave, capacitance, and photo-diode, have been studied. At Argonne National Laboratory (ANL), we developed a nonvisual, noncontact fabric-inspection system that can detects defects in real-time on the loom[1]. The system is compact, rugged, and low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Unlike other available techniques, the ANL ultrasonic system is not affected by vibration generated by the weaving machine

    Silver nanoparticles from oregano leaves’ extracts as antimicrobial components for non-infected hydrogel contact lenses

    Get PDF
    The oregano leaves’ extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl–methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV–Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses

    Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

    Get PDF
    This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005±0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future

    `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    Get PDF
    Based on the algebraico-categorical (:sheaf-theoretic and sheaf cohomological) conceptual and technical machinery of Abstract Differential Geometry, a new, genuinely background spacetime manifold independent, field quantization scenario for vacuum Einstein gravity and free Yang-Mills theories is introduced. The scheme is coined `third quantization' and, although it formally appears to follow a canonical route, it is fully covariant, because it is an expressly functorial `procedure'. Various current and future Quantum Gravity research issues are discussed under the light of 3rd-quantization. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly written that the Editor for this volume is Daniele Oriti, with CUP as publisher. I apologize for the mistake.
    corecore